

Weather and UAS Traffic Management (UTM) Workshop NASA Ames Conference Center

Moffett Field, CA 19-21 July 2016

MQ-8 (Fire Scout) Icing Impact / Challenges

Robert Ernst

NAVAIR (PMA-266)
Chief Engineer
301-757-0442
robert.ernst@navy.mil

Ajay Sehgal

KBRWyle's Aerospace Group Chief Engineer 240-298-0570 ajay.sehgal@wyle.com

- Why is Icing CRITICAL?
- ☐ Icing Solutions Options / Challenges
- ☐ Fire Scout Program / System Background
- ☐ Fire Scout Icing Trade Study
- □ Fire Scout Icing Solutions ROADMAP
- Summary

MQ-8 (Fire Scout) Icing Impact / Challenges Why is Icing CRITICAL?

Rotary Wing

More Complex Phenomenon:

- Variable airspeed along the span,
- Variable blade angle of attack,
- Variable surface temp along the span,
- Smaller airfoil thicknesses / LE radii

Other potential hazards:

- Excessive vibrations and/or critical components failures (asymmetrical ice-shedding from rotor blades)
- Foreign Object Damage (FOD) to other critical components (iceshedding from rotor blades)
- Loss of directional control (RPM decay)
- Serious deterioration in autorotation performance

Lack of onboard cues:

Visual Indications

Unmanned AV

Changes in AV flight characteristics

Delayed AVO notification

 Significant performance degradation with potential AV loss

MQ-8 (Fire Scout) Icing Impact / Challenges Potential Safeguards

Pre-encounter Icing

MQ-8 (Fire Scout) Icing Impact / Challenges Ice Protection Systems (Anti / De-icing)

ACTIVE IPS

Thermal

- Electro-thermal
- Hot Air (Engine Bleed Air)
- Carbon nanotubes

Mechanical

- Pneumatic boots
- Electro-Impulsive

Chemical

Fluid (Glycol)

Hybrid

Combination of multiple systems

Coatings

Icephobic

Still in development-

PASSIVE IPS

- Durability (Erosion)
- Ease of Application

Due to limited SWaP there is a need to develop IPS suitable for lightweight UAVs

MQ-8 (Fire Scout) Icing Impact / Challenges Ice Detection Systems

Pre-encounter Icing

Radar –

- Polarimetry
- Multi-frequency (differential attenuation)
- Doppler Spectra

LIDAR -

- Single / Multiple scattering
- Depolarization

Radiometer -

- Microwave sounders
- Polarization
- Multiple frequency

Model-based Estimation Algorithm

What?

- Ice accretion rate
- Ice thickness
- Liquid water content
- Ice water content
- Droplet size
-

Mechanical -

Vibratory probe

Optical –

Change in reflective / refractive properties

NO Ice Detection System suitable for lightweight UAVs is yet available that meets <u>SWaP LIMITATIONS</u> and provides adequate <u>ADVANCE NOTIFICATION</u>

MQ-8 (Fire Scout) Icing Impact / Challenges System Description

Fully Autonomous Aircraft

Airframe

 Fully Digital, Dual Redundant Control System and C² links

MQ-8B

Operational Payloads

• Open System Architecture facilities integration and testing

BriteStar II EO/IR/LR/LD

TACISR / Vortex

Payloads in Test Phase

- COBRA
- Radar (Maritime Surface Search/SAR)
- Weapons

Encrypted, Digital Data Links; Land & Sea Ops

Tactical Control
Data Link (TCDL)

UCARS-V2 for Ship Launch/Recovery

Control Station with Tactical Control System (TCS) software integrated

- Open Architecture
- GCCS-M, JDISS, AFATDS, CCTV & JSIPS-N
- NATO STANAG 4586 Compliant
- Multi-Vehicle control

MQ-8 Support to Small Surface Combatants

Support LCS Missions in Conjunction with MH-60

- LCS-1 Dynamic Interface (DI) testing on LCS-1, LCS-3, and LCS-4
- COBRA MCM Capability land testing (Apr 2013)
- LCS-3 Deployment (1QFY15)

Maritime ISR Support to SOF (MQ-8B)

 MQ-8B 10th FFG deployment ongoing aboard USS Simpson

Radar

- Provides wide-area maritime search capability
- QRA 2QFY15

Weapons

- Flying qualities testing
- Safe Separation shots
- Land-based QRA (2013)
 - 12 APKWS shots
- LCS testing still required

Coast Guard

 Demonstration of MQ-8B on WMSL 750 (Dec 2014)

MQ-8B has flown over 16,000 flight hours since 2006 MQ-8C has flown over 750 flight hours since 2013

MQ-8B	Parameter	MQ-8C
85 kts	Maximum Speed	135 kts
80 kts	80 kts Cruise Speed	
12,500 ft	Service Ceiling	16,000 ft
5.5 hrs	Std Day Maximum Endurance (with 300lb payload)	12 hrs
4.5 hrs	Hot Day Maximum Endurance (with 300lb payload)	10 hrs
2,000 lbs	Empty Weight	3,200 lbs
3,150 lbs	Std Day Fuel & Payload	6,000 lbs
31.5 ft	Length (folded)	34.7 ft

MQ-8C: 3 ft Longer (folded), 1 ft Taller, 2.5 ft Wider

MQ-8 System Commonality

Common Equipment

- ARC-210 Radios
- Flight Power Conditioning Unit
- · Aux Power Conditioning Unit
- Ethernet Switch & Router
- · Payload Interface Unit
- Vehicle Management Computers (2)
- · Flight Control / Engine Actuators (6)
- · Voice Digitizing Module
- · Engine Interface Unit

- EO/IR Payload
- · Ground Control Panel
- I/O Data Panel
- 3 UHF/VHF Antennas
- 1 UCARS Antenna
- 2 GPS/INS Antennas
- 2 RADALT Antennas
- 2 IFF Antennas

MQ-8B Schweitzer 333

Common Equipment

- ARC-210 Radios
- · Flight Power Conditioning Unit
- Aux Power Conditioning Unit
- Ethernet Switch & Router
- Payload Interface Unit
- Vehicle Management Computers (2)
- Flight Control Actuators (4)
- · Voice Digitizing Module
- · Engine Interface Unit

- EO/IR Payload
- · Ground control Panel
- I/O Data Panel
- 3 UHF/VHF Antennas
- 1 UCARS Antenna
- 2 GPS/INS Antennas
- 2 RADALT Antennas
- 2 IFF Antennas

90% Common Software

MQ-8C

Bell 407

MQ-8C Unique Equipment

- GPS/INS
- · Vibration Monitoring System
- IFF (APX-123)

- TCDL
- RADALT

TCDL

- Wide band data link
- Component of LCS
- Added for other ship

Ship Control Station

TCS

UCARS

- · Guidance, Nav, & Control
- Precision Nav

- Deck Handling
- · Refuel/Defuel
- Non-powered A/C movement

MQ-8B and MQ-8C employ common equipment to the maximum extent possible on both the AV and the Ship with over 90% common software

MQ-8 (Fire Scout) Icing Impact / Challenges Current Safeguards / CONOPS / Status in Icing Ops

Ice Detector and Accretion System

Vibrating probe to detect icing

Engine Anti-Icing

Compressor bleed air

Pitot System Anti-Icing

Heated pitot-static system

BRITE Star II EO/IR Sensor

• May be used to see and avoid areas of visible moisture (clouds)

Warning, Caution, and Advisory (WCA)

Avoid Operations in Known / Forecasted Icing Conditions

- Required to maintain certain Horizontal Separation
- Required to maintain certain Vertical Separation
- Frequent delays, altered routes, or cancelled sorties during winter
- To-date there have been two significant in-flight icing events

MQ-8 (Fire Scout) Icing Impact / Challenges Benchmarking- with Other NAVY UASs

UAS	Group	Ice Protection	Ice Detection	CONOPS	Misc / Comments
Wasp IV				A	
Raven B	1	None	None	Avoid flights in known/forecast icing conditions	Susceptible to icing if encountered
Puma					0.100 0.110.100.
Scan Eagle	2	None	None	Avoid flights in known/forecast icing conditions	Susceptible to icing if encountered
Aerosande					
Shadow	3	None	None	Avoid flights in known/forecast	Susceptible to icing if encountered
RQ-21A Blackjack	3	None	None	icing conditions	
Fire Scout (MQ-8B & MQ-8C)		-Rotor : None -Engine: Bleed air -Pitot : Electro-thermal	Airframe mounted ice detection probe for insitu ice detection	Operations in known / forecast icing prohibited	-GNC Logic for evasion -EO/IR for AVO SA -In-flgiht replanning
Cargo UAS (CQ-24a K-MAX)	-	-Rotor : None -Engine: Bleed Air -Pitot : Electro-thermal	Airframe mounted ice detection probe for insitu ice detection	Operations in known / forecast icing prohibited	-In-flight replanning
X47B (Demo)		None	None	Avoid flights in known/forecast icing conditions	-Demo AV
BAMS-D	5	None	Airframe mounted ice detection probe for insitu ice detection	Operations in known / forecast icing prohibited	-In-flight replanning

Most UASs opt for "AVOIDANCE" with limited Ice Protection due to excessive SWaP requirements

MQ-8 (Fire Scout) Icing Impact / Challenges Fire Scout – Icing Solutions Trade Study

Primary Focus of the Trade Study- Potential Solutions for AVOIDANCE

MQ-8 (Fire Scout) Icing Impact / Challenges Trade Study - Process

I. Review the current CONOPS in icing environment Gaps / Limitations

2. Identify key attributes of the Ice Detection System Constraints / Guidelines

3. Prioritize key attributes using appropriate weighting factors Comparative Assessment

4. Identify potential solutions RFI

5. Map each solution against key system attributes - Vendor Information

Type of technology,

Technology readiness level,

Ease of implementation,

Cost / schedule for implementation

....

6. Prioritize solutions based on (weighted) key attributes C & A Matrix

7. Develop Roadmap Deliverable

Trade Study Process utilizes a Systems Engineering Approach

MQ-8 (Fire Scout) Icing Impact / Challenges Trade Study – Prioritized Key Attributes

Weighting Factor	Key Attribute	Threshold (if any)
10	Adverse Weather Performance (Low visibility, day/night, near all weather)	
9	Accuracy (High probability of detection, Low false alarm)	
9	Range (Detection range, azimuth, elevation)	5 nmiles
8	Operational Availability / Reliability / Maintainability	
7	Emission Control	
7	Ease of Integration (Cost / Schedule)	
6	Technology Readiness Level	
5	Shipboard Components & Mods Required	
5	AV Mods Required / Impacts (SWaPC)	
4	Time to notify AVO (update rate, processing time, latency, etc.)	
3	Spoofing / Jamming Susceptibility	
3	Compatibility with both broad/narrow band data links	
2	Denied GPS Functionality	
1	Commonality ('B' & 'C')	

MQ-8 (Fire Scout) Icing Impact / Challenges Trade Study – RFI / Vendor Proposals

MQ-8 (Fire Scout) Icing Conditions Detection Capability

Request for Information (RFI)

Detailed Requirements Attachment

7/31/2014

THIS RFI IS FOR INFORMATION OR PLANNING PURPOSES ONLY

Contracting Office Address: Department of the Navy, Naval Air Systems Command, AIR 2.4.2.1, Bldg 441, 21983 Bundy Patuxent River, MD 20670-1547

Technical Point of Contact:

Dave Eccles 22707 Cedar Point RD Building 3261 Patuxent River, MD 20670

Phone Number: (301) 757-6403 Email: david.eccles@navy.mil.

	OPTION 1
	OPTION 2
	OPTION 3
	OPTION 4
	OPTION 5
	OPTION 6
	OPTION 7
	OPTION 8
	OPTION 9
	OPTION 10
	OPTION 11

OPTION 11

OPTION 12

VENDORS

MQ-8 (Fire Scout) Icing Impact / Challenges Trade Study – Mapping Vendor Proposals

NO ONE PROPOSAL PROVIDES THE DESIRED SOLUTION

MQ-8 (Fire Scout) Icing Impact / Challenges Trade Study – Systems of Systems Approach

NO ONE PROPOSAL PROVIDES THE DESIRED SOLUTION

MQ-8 (Fire Scout) Icing Impact / Challenges Trade Study – Cause & Effect Matrix (Prioritization)

MQ-8 (Fire Scout) Icing Impact / Challenges Trade Study – Roadmap Development Strategy (NT)

MQ-8 (Fire Scout) Icing Impact / Challenges Trade Study – Roadmap Development Strategy (LT)

MQ-8 (Fire Scout) Icing Impact / Challenges Trade Study – Roadmap Dev Strategy (Integrated)

MQ-8 (Fire Scout) Icing Impact / Challenges Trade Study – Integrated Roadmap

Fire Scout design has inherent safeguards against icing
Additional safeguard is provided by current CONOPS limiting operations in known / forecasted icing
There is a compelling need for an early detection system for providing AVO an advance warning of impending icing condition
There is NO ONE solution available yet that is suitable for lightweight UAS
The ready icing solution will involve composite solutions using Systems-of-systems approach
An Integrated ROADMAP providing near-term and long- term solutions has been developed and implemented

System Overview

MQ-8 (Fire Scout) Icing Impact / Challenges Trade Study – Roadmap Development Strategy

Near-Term Strategy

- Improve Situational Awareness -
 - AV Ice detection probe sensitivity investigation
 - WCA indication to the AVO accompanied by other secondary indications (such as engine N2, TOT, and Nr exceedances)
- Improve AV Response -
 - When the AV gets into icing, ensure that GNC/AVO actions don't accelerate the loss of the aircraft

Intermediate/Long-Term Strategy

- Improve Situational Awareness -
 - Better METOC reporting
 - Early warning of impending icing conditions
- Better sensing-
 - The AV needs the ability to gather its own tactical information about icing to enable the GNC/AVO to take evasive action(s)

AV Forward

K

AVO reaction

System

Detection Range

Detection

Turn radius w

Minimum detection range of 5 nmiles is expected to provide adequate AVO reaction time